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Abstract
Postoperative cognitive dysfunction is a crucial public health issue that has been increasingly studied in 
efforts to reduce symptoms or prevent its occurrence. However, effective advances remain lacking. Hyper-
baric oxygen preconditioning has proved to protect vital organs, such as the heart, liver, and brain. Recently, 
it has been introduced and widely studied in the prevention of postoperative cognitive dysfunction, with 
promising results. However, the neuroprotective mechanisms underlying this phenomenon remain con-
troversial. This review summarizes and highlights the definition and application of hyperbaric oxygen 
preconditioning, the perniciousness and pathogenetic mechanism underlying postoperative cognitive 
dysfunction, and the effects that hyperbaric oxygen preconditioning has on postoperative cognitive dys-
function. Finally, we conclude that hyperbaric oxygen preconditioning is an effective and feasible method 
to prevent, alleviate, and improve postoperative cognitive dysfunction, and that its mechanism of action is 
very complex, involving the stimulation of endogenous antioxidant and anti-inflammation defense systems.

Key Words: nerve regeneration; brain injury; hyperbaric oxygenation; preconditioning; antioxidants; anti-
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dysfunction; neural regeneration

Introduction
Postoperative cognitive dysfunction (POCD) is a complica-
tion of surgery that is widely considered an important clin-
ical problem, particularly in elderly patients (Shoair et al., 
2015). However, the pathophysiology underlying POCD is 
fairly complex, involving numerous mechanisms including 
oxidant stress, inflammation, and apoptosis (Eckenhoff 
et al., 2004; Dong et al., 2009; Thom, 2009; Cao et al., 
2012; Wilson et al., 2013). Over the past several decades, 
researchers have explored a wide array of methods for 
improving POCD, including hyperbaric oxygen precondi-
tioning (HBOPC). HBOPC is one of the most economical, 
simple, safe, and effective strategies among all the possible 
choices (Zhu et al. 2016). Indeed, studies have successfully 
utilized HBOPC to improve cognitive dysfunction (Alex et 
al., 2005; Peng et al., 2010; Sun et al., 2014). The purpose 
of this narrative review is to summarize and discuss the 
literature concerning HBOPC and POCD, with an empha-
sis on the evidence for a role of HBOPC in treating pa-
tients undergoing POCD. The review is organized into the 
following sections: introduction of HBOPC, mechanisms 
underlying POCD, and the effect of HBOPC on POCD 
(Figure 1).

HBOPC
Definition of HBOPC
During HBO treatment, patients usually inhale pure oxygen 
(100%) at pressures greater than the atmospheric pressure 
in a steel vessel (Löndahl, 2012), which increases both the 
dissolved oxygen and the partial pressure of oxygen in blood 
plasma (Tibbles and Edelsberg, 1996). Consequently, a large 
amount of oxygen-dependent reactions and signaling path-
ways are enhanced (Babchin et al., 2011). 

Application of HBOPC
Normobaric oxygen and various levels of HBO have been 
widely utilized therapeutic agents, and Valenzuela pioneered 
the application of pure oxygen (as high as 2 MPa) in clinical 
research (Edwards, 2010). The use of HBO as an adjuvant 
treatment for a number of medical conditions has been 
widely supported by the experience of experts in hyperbaric 
medicine and the scientific literature in areas such as trau-
matic brain injury (Hu et al., 2016; Zhou et al., 2016a, b) 
complex refractory wounds (Morykwas and Argenta, 1996), 
cerebral infarction (Tian, 2015), and radiation-tissue injury 
(Kindwall and Hunt, 1995; Kindwall and Wheland, 1999). 
Along with the development of medicines, disease preven-
tion has increasingly become recognized as important. Pre-
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conditioning is a type of primary prevention that activates 
endogenous protective mechanisms, which can reduce the 
risk of morphologic and functional sequelae. The precondi-
tioning state is typically defined by the response to a subleth-
al stimulus that extends beyond its presence in the system. 
This response significantly lessens the level of signal cas-
cades for stress-activated and stress-reactive proteins, which 
subsequently shows a protective effect for cells. Recently, 
HBO has become recognized as an effective preconditioning 
method for reducing mental and cellular stresses, especially 
in regimented sessions of moderate HBO (Nie et al., 2006; 
Li et al., 2008). In the clinic, however, HBOPC has had only 
minimal impact before surgery, and no role in the surgery 
or post-surgical care of patients (Allen et al., 2014). HBO 
protocols are performed at 2.0–2.5 atmosphere absolute 
(ATA) oxygen partial pressures, and usually only applied for 
one or a few days. The physical adaptations in response to 
alterations in atmospheric oxygen appear to extend not only 
to survival, but also a preconditioned state. Similar to isch-
emic and stress preconditioning, many different paradigms 
have been used to demonstrate that either rapid or delayed 
tolerance is affected by the HBO (Stetler et al., 2014). To 
achieve the best outcome using HBOPC, it requires a certain 
O2 concentration and high pressure. When air (20% oxy-
gen) rather than 100% O2 was infused into the hyperbaric 
chamber, the tolerance was negated, demonstrating the need 
for high O2 concentration in the hyperbaric preconditioned 
state (Wada et al., 2001). Additionally, Kocaoğullar et al. 
(2004) compared normobaric oxygen with HBO treatment 
of rats with cerebral vasospasm after subarachnoid hemor-
rhage and found that normobaric oxygen was less effective 
in ameliorating neurological deficits associated with the 
central nervous system. Many experiments have shown that 
HBOPC can protect against subsequent multi-organ injury 
to the brain, heart, or liver (Alex et al., 2005; Yu et al., 2005; 

Figure 1 Summary of article structure.
POCD: Postoperative cognitive dysfunction; HBOPC: hyperbaric oxygen preconditioning; MMP: matrix metalloproteinase; ROS: reactive oxy-
gen species; MAPK: mitogen-activated protein kinase; RNS: reactive nitrogen species. 

Qin et al., 2008). Previous studies suggest that precondition-
ing with pressures of 2 ATA 3–5 sessions/every other day 
was effective in inducing tolerance against global ischemia 
in gerbils (Wad et al., 1996; Wada et al., 2001). Cheng et al. 
(2011) reported that 2.5 ATA preconditioning, 1 hour daily 
for 5 days, protected against subsequent global ischemic in-
jury in rats (Cheng et al., 2011). Similarly, pretreatment with 
HBO has been found both to improve the degree and accel-
erate the rate of neurologic recovery. Additionally, long-term 
HBOPC paradigms have been shown to be more effective at 
establishing tolerance than are acute paradigms (Xiong et al., 
2000; Dong et al., 2002; Nie et al., 2006; Liu et al., 2012). An-
imal studies of ischemia/reperfusion (I/R) injury in the myo-
cardium have indicated that HBO preconditioning can lead to 
ischemia tolerance, resulting in protection against myocardial 
ischemia (Kim et al., 2001). In addition to these experimental 
studies, clinical studies have demonstrated that precondi-
tioning patients who have coronary artery disease with HBO 
before on-pump cardiopulmonary bypass or coronary artery 
graft bypass were in a position improved myocardial function, 
and reduced myocardial injury, the duration of staying in the 
intensive care unit, blood loss, postoperative complications, 
and cost (Yogaratnam et al., 2010; Li et al., 2011). Karu et al. 
(2010) indicated that exposure to hyperoxia for a limited time 
before ischemia induced a mild oxidative stress and resulted 
in an (ischemic) preconditioning-like effect in the myocar-
dium, which protected the heart from subsequent injury. Yu 
et al. (2005) performed an experimental study in rats and 
reported preconditioning with single-dose HBO (90 minutes) 
protects the rat liver against subsequent I/R injury. Ren et al. 
(2008) similarly reported that HBO preconditioning increased 
the number of new cells and the density of microcirculation 
in the regenerating liver. Therefore, HBO preconditioning is 
an encouraging and feasible therapeutic strategy for protect-
ing organs from the subsequent lethal stimulus. The effect and 
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mechanism of HBOPC on POCD will be described below.

POCD
Definition and perniciousness of POCD 
Every year, numerous people undergo surgery hoping that 
the operation will lighten symptoms, heal diseases, and 
improve quality of life (Berger et al., 2015). Although there 
is much interest in, and controversy about, the mechanism 
and treatment of POCD, there is little doubt that cognitive 
decline after surgery (especially in the elderly population) is 
a critical clinical issue that shows a high morbidity. POCD 
is defined as an impairment in mental processes of percep-
tion, memory, and information processing that occurs in the 
postoperative period (Hanning, 2005), and which is diag-
nosed by specific tests after exclusion of other neurological 
complications. Both cardiac surgery and non-cardiac sur-
gery are associated with the cognitive dysfunction after hos-
pital discharge from 30% to 50% of patients (Newman et al., 
2001; McDonagh et al., 2010; Selnes et al., 2012). One study 
reported the incidence of cognitive decline to be 53% at dis-
charge, 36% at 6 weeks after discharge, 24% at 6 months after 
discharge, and 42% at 5 years after coronary-artery bypass 
grafting (Newman et al., 2001). Shoair et al. (2015) showed 
that 15.9% of older adult patients developed POCD within 
3 months after elective major non-cardiac surgery. Other 
studies have found that POCD is associated with poor short-
term and long-term outcomes, including an increased risk of 
disability, increased expenditure on hospitalization, inability 
to cope independently, reduced quality of life, and possible 
permanent dementia (Hovens et al., 2014; Shoair et al., 2015). 
Patients with POCD are at an increased risk of death in the 
first year after surgery and the elderly (aged 60 years or old-
er) are at a significant risk for long-term cognitive problems 
(Moller et al., 1998; Monk et al., 2008; Avidan et al., 2009; 
Steinmetz et al., 2009). 

Pathogenic mechanism of POCD 
There is strong standpoint that cognitive decline experienced 
by elderly patients is directly mediated by neuro-inflamma-
tion and the enhancement of amyloid-beta oligomerization 
after surgery and general anesthesia (Bedford, 1955; Eck-
enhoff et al., 2004; Müller et al., 2004; Newman et al., 2007; 
Dong et al., 2009; Cao et al., 2012). At the same time, some 
results suggest that surgery results in neuro-inflammation 
and cognitive impairment, and that anesthesia might not be 
an essential influential factor for these effects (Zhang et al., 
2015; Zhou et al., 2015). Despite these controversies, existing 
evidence has confirmed that neuro-inflammatory response to 
operative stress is an independent risk factor associated with 
the development of POCD (Wan et al., 2007; Barrientos et 
al., 2012; Hovens et al., 2014; Lu et al., 2015; Ma et al., 2015; 
Zheng et al., 2015). Amyloid beta, the peptide associated with 
Alzheimer’s disease, was also detected in the serum of POCD 
patients. Another important player is acetylcholine, which has 
significant roles in memory, learning, and attention (Hshieh 
et al., 2008). The most likely mechanism underlying POCD 
is a central cholinergic deficiency caused by the deregulation 

of cholinergic anti-inflammatory pathways, which results 
in increased inflammation (Inouye, 2006; Androsova et al., 
2015). Many scholars have highlighted the importance of the 
cholinergic reflex in resolving the inflammatory pathogenesis 
of several diseases, including sepsis (Borovikova et al., 2000), 
rheumatoid arthritis (van Maanen et al., 2009), and colitis (Ghia 
et al., 2007). Researchers have reported that pro-inflammatory 
cytokines, including interleukin (IL)-1 and tumor necrosis fac-
tor-alpha (TNF-α), play key roles in mediating surgery-induced 
neuro-inflammation and subsequent cognitive decline (Cibelli 
et al., 2010; Terrando et al., 2010). Results reveal that surgery, 
not propofol-based anesthesia, induces neuro-inflammation 
and the impairment of learning and memory. Pyrrolidine 
dithiocarbamate attenuates these effects by inhibiting nuclear 
factor-kappa B activation and downstream matrix metallopep-
tidase 9 activity (Zhao et al., 2013; Zhang et al., 2014). Other 
studies have demonstrated that peripheral surgery affects the 
blood-brain barrier through the release of TNF-α. This pro-
motes macrophage migrating into the hippocampus (Rudolph 
et al., 2008; Terrando et al., 2011; Vacas et al., 2013). Activation 
of α7 nicotinic acetylcholine receptors trigger an endogenous 
inflammation-resolving pathway that has been proven to be 
useful in blocking TNF-α-induced nuclear factor-kappa B 
activation and cognitive decline after surgery (Terrando et 
al., 2011). Jiang et al. (2015) suggested that IL-6 has a crucial 
role in POCD, and that IL-6R antagonists may serve as novel 
agents for its prevention or treatment. Chen et al. (2015) also 
demonstrated that dexmedetomidine reduces the incidence of 
POCD by suppressing inflammation in aged patients. 

Roles of HBOPC on POCD
Cognitive decline after surgery includes deterioration in 
cognition, disturbance in attention, and reduced awareness 
of the environment. In light of recent clinical developments, 
HBO preconditioning has been shown to protect against 
focal and global cerebral ischemia as well as traumatic brain 
injury (Cheng et al., 2011; Yan et al., 2011; Lin et al., 2012). 
Furthermore, HBO preconditioning can promote both 
cerebral-protective and cardiac-protective effects, as deter-
mined by biochemical markers of neuronal and myocardial 
injury and clinical consequences in patients experiencing 
on-pump coronary artery bypass-graft surgery (Yogaratnam 
et al., 2010; Li et al., 2011). Additionally, Alex et al. (2005) 
indicated that while pretreatment with 2.4-ATA HBO can 
reduce neuropsychometric dysfunction and modulate the 
inflammatory response that occurs after cardiopulmonary 
bypass. In basic studies, Sun et al. (2014) indicated that HBO 
preconditioning can significantly lessen cognitive impair-
ment, and that it can be considered responsible for decreases 
in pro-inflammatory (either systemic or central) cytokines 
and caspase-3 activity. Similarly, Peng et al. (2010) indicated 
that continuous HBOPC could lead to an apparent improve-
ment in impairments of associative learning and spatial 
memory. The study also showed that HBOPC has an effective 
anxiolytic effect and provided experimental evidence that 
supports the idea that HBOPC is useful for treating some af-
fective disorders, including post-traumatic stress disorder. All 
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these results showed that HBO preconditioning is a safe and 
feasible procedure that can attenuate cognitive impairments 
after surgery. Additionally, they show that it is associated with 
anti-oxidants stress, anti-inflammation, and anti-apoptosis, 
as well as increased regional cerebral blood flow distribution 
and improvement of blood-brain barrier integrity (Li et al., 
2007; Micarelli et al., 2013; Tian et al., 2013; Sun et al., 2014). 
Among these phenomena, the anti-oxidative stress and an-
ti-inflammatory action of HBOPC are considered two crucial 
mechanisms with respect to easing POCD.

Antioxidant stress
(1) Anti-oxidative stress is achieved through activation of an-
tioxidant enzymes and the decrease of pro-oxidant enzymes. 
HBO can elevate the partial pressure of oxygen and enhance 
the cellular tolerance against harmful stimuli by inducing the 
expression of cell protective proteins (Thom, 2009). Several 
studies have shown that the endogenous antioxidant-defense 
system becomes active in parallel with the development of 
HBOPC-induced neuroprotection (Nie et al., 2006; Thom, 
2009; Huang et al., 2014). Numerous studies have shown 
that repeated preconditioning with HBO, but not normal 
conditions, can protect the spinal cord against I/R damage 
(Nie et al., 2006; Lu et al., 2012; Huang et al., 2014). These 
results have been attributed to the protective effect of up-
regulated HO-1, and the activity of catalase and superoxide 
dismutase (SOD), which are triggered by HBO precondi-
tioning (Li et al., 2007). Further investigations have shown 
that when dimethylthiourea, a potent free radical scavenger, 
was administered before each session of HBO treatment, the 
HBO-induced catalase and SOD activities were abolished. 
Similarly, when the catalase inhibitor 3-amino-1,2,4-triazole 
or dimethylthiourea was administered before spinal cord 
ischemia, the ischemic tolerance induced by HBOPC was 
attenuated (Nie et al., 2006; Huang et al., 2014). HBOPC 
was shown to decrease mortality rate, improve neurological 
recovery, lessen neuronal injury, reduce the level of malond-
ialdehyde, and increase antioxidant activity of catalase and 
SOD (Li et al., 2008). Repeated HBO exposure supplies 
protection against oxygen toxicity in the central nervous sys-
tem and this may be attributed to the decreased enzymatic 
activity of the antioxidant system and reduced levels of per-
oxynitrite, primarily in the hippocampus (Arieli et al., 2014). 
In related work, Peng et al. (2010) suggested that HBOPC 
is beneficial for the improvement of anxiety-like behavior 
and cognitive impairments arising from a single prolonged 
exposure to stress, and that this effect might be associated 
with inhibition of neuronal apoptosis via upregulation of 
thioredoxin reductase in stressed rats. These results con-
firmed that HBO preconditioning can induce upregulation 
of antioxidant-enzyme activity, leading to the generation 
of tolerance against I/R injury in the brain (Li et al., 2008). 
Expression of antioxidant enzymes, including Cu/Zn-super-
oxide dismutase, catalase, and glutathione peroxidase, have 
been shown to be enhanced by HBOPC (Kim et al., 2001; 
Li et al., 2008). Additionally, levels of pro-oxidant enzymes 
such as inducible nitric oxide synthase and gp91-phox have 

been shown to significantly decrease after HBOPC (Zhang 
and Gould, 2014). However, few animal experiments re-
ported that in the hippocampus of preconditioned rats, the 
activities of glutathione reductase and glucose-6-phosphate 
dehydrogenase were substantially decreased, while the activ-
ity of glutathione peroxidase was greatly increased (Arieli et 
al., 2014).

(2) Anti-oxidative stress is also achieved through the re-
active oxygen species negative feedback loop. Transiently 
increased reactive oxygen species (ROS) levels activate a 
negative feedback loop, which leads to downregulation of 
oxidant enzymes and upregulation of antioxidant enzymes, 
thereby limiting subsequent higher levels of reactive spe-
cies of oxygen and nitrogen production (Zhang and Gould, 
2014). Furthermore, these results also indicate that ROS-re-
lated enzymes, including inducible nitric oxide synthase and 
nicotinamide adenine dinucleotide phosphate oxidase, rath-
er than the ROS itself, can be crucial therapeutic targets for 
inhibiting oxidative stress. 

(3) Anti-oxidative stress can also result from regulation of 
the ROS/mitogen-activated protein kinase (MAPK)/matrix 
metalloproteinase (MMP) and ROS/reactive nitrogen species 
(RNS) signaling pathways. HBO repairs ischemic wounds by 
decreasing the phosphorylation of extracellular signal-regu-
lated kinases 1/2, c-Jun N-terminal kinase, and c-Jun, which 
suggests that mitogen-activated protein kinase is downreg-
ulated. All these results demonstrate that HBO acts via the 
ROS/MAPK/MMP signaling pathway to decrease neuro-
degeneration and ameliorate healing of ischemic wounds 
(Zhang and Gould, 2014). For example, the level of oxidative 
stress in ischemic wound tissue will be highly enhanced 
when the effect of HBO is completely blocked (Zhang and 
Gould, 2014). The oxidized N-linoleoyl tyrosine marker is 
sufficiently sensitive to detect oxidative stress imposed on 
cells and cell-free systems and to react selectively with the 
various ROS/RNS that are induced as a result. Thus, it is very 
useful for characterizing oxidative stress in general, and pos-
sibly also in oxidative stress-associated diseases (Szuchman 
et al., 2006). In one ingenious and delicate experiment, the 
oxidized N-linoleoyl tyrosine marker and the protein prod-
ucts of advanced oxidation were analyzed to demonstrate 
that preconditioning with multiple short HBO exposures 
followed by a long exposure will lead to a decrease in oxida-
tive adducts, reaching even lower levels than that which ini-
tially existed in the control group. Endogenous antioxidant 
defense mechanisms induced by HBOPC play an important 
role in the formation of tolerance against long HBO expo-
sure (Palzur et al., 2011).

(4) Antioxidant gene expression is another factor that in-
creases anti-oxidative stress. Ferrer et al. (2007) showed that 
HBO can also act to activate antioxidant genes in human tis-
sue. Endothelial cells are sensitive to high pressure oxygen ex-
posure, which easily triggers the expression of many Nrf2-reg-
ulated antioxidant genes and molecular chaperones (Godman 
et al., 2010a, b). Additionally, the expression of antioxidant 
genes also occurs in other cells and tissues activated by HBO 
(Padgaonkar et al., 1997; Dennog et al., 1999; Rothfuss et al., 



333

Gao et al. / Neural Regeneration Research. 2017;12(2):329-336.

2001; Verma et al., 2015).
All these observations serve to illustrate central role that 

anti-oxidative stress has as a mechanism underlying HBO 
treatment. The findings strongly suggest that HBO precon-
ditioning is a potentially promising treatment for preventing 
the development of cognitive impairment after surgery.

Anti-inflammation 
Despite advances in surgical techniques, the incidence 
of neuropsychometric dysfunction after surgery is high. 
Previous studies have demonstrated that the systemic and 
central inflammatory response plays a critical role in the 
development of postoperative cognitive impairment (Cibelli 
et al., 2010; Fidalgo et al., 2011; Barrientos et al., 2012; He 
et al., 2012; Hovens et al., 2014; Sun et al., 2014), and HBO 
treatment can improve POCD by attenuating inflammatory 
responses (Alex et al., 2005; Daniel et al., 2011; Lin et al., 
2012a, b).

(1) Inflammatory responses can be reduced by increased 
expression of antioxidant genes. ROS plays a significant role 
in transduction cascades and pathways (Allen and Balin, 
1989; Maulik, 2002; Ushio-Fukai and Alexander, 2004; Ca-
labrese et al., 2007). HBO-related anti-inflammatory action 
can be partially induced through increased expression of an-
tioxidant genes and other cellular defense genes via non-cy-
totoxic oxidative stimuli (Godman et al., 2010a, b; Matsuna-
mi et al., 2010, 2011; He et al., 2011; Simsek et al., 2011). 

(2) Attenuation of inflammatory cells sequestration and 
adhesion can also reduce inflammatory responses. Tissue 
inflammation can occur when circulating neutrophils adhere 
to vascular endothelium through interactions with β2-inte-
grins. However, neutrophil β2-integrin function is inhibited 
by exposure to HBO (Thom et al., 2008; Thom, 2009). In 
some cases, when animals or humans are exposed to HBO 
(2.8–3.0 ATA), the ability of circulating neutrophils to ad-
here to target tissues is temporarily inhibited, and inflamma-
tion is subsequently reduced (Thom, 1993; Zamboni et al., 
1993; Thom et al., 1997; Labrouche et al., 1999; Kalns et al., 
2002). In ameliorating I/R injuries, HBO is notably superior 
to β2-integrin monoclonal antibodies because it does not 
compromise the immune system (Mileski et al., 1990; Buras 
et al., 2006). At the same time, HBO exposure also leads to 
the impaired synthesis of cyclic guanosine monophosphate 
(Chen et al., 1996), which  consequently reduces the activity 
of the neutrophil specific adhesion molecule CD18 (Malik 
and Lo, 1996). In the meantime, intercellular adhesion mole-
cule 1, which is a marker of acute and chronic inflammation, 
acts as the receptor of leukocyte function associated antigen-1 
(CD11a/CDx18). This antigen is expressed on various inflam-
matory cells, including neutrophils, monocytes, and lympho-
cytes. For example, some studies have indicated that levels of 
intercellular adhesion molecule 1 are downregulated by HBO 
(Buras et al., 2000). By downregulating the accumulation of 
these cellular adhesion molecules, neutrophil sequestration 
and adhesion is attenuated, which reduced inflammation 
(Zamboni et al., 1993).

(3) Inflammation is also reduced through the inhibition 

of pro-inflammatory cytokine production. The production 
of pro-inflammatory cytokines by monocyte-macrophages 
is inhibited after exposure to HBO. Pro-inflammatory cyto-
kine-regulating adhesion molecules and enhancement of heme 
oxygenase-1 and heat shock proteins (e.g., heat shock protein 
70) (Rothfuss et al., 2001) are all mechanisms considered to 
play important roles in the anti-inflammatory effects of HBO. 
Compared with cells isolated from HBO-exposed rats (Lahat et 
al., 1995), those isolated from rats that were not previously ex-
posed to HBO released more TNF-α. Additionally, in endotox-
ic rats, HBO treatment inhibits the endotoxin lipopolysaccha-
ride-induced pro-inflammatory cytokines in monocytes and 
macrophages (Benson et al., 2003). Niu et al. (2007) reported 
that pyrogenic fever is prevented and suppressed by HBO via 
decreased overproduction of circulating TNF-α and hypotha-
lamic prostaglandin E2. Similarly, several studies have demon-
strated that the rise of TNF-α (Huang et al., 2006) and IL-6 (Niu 
et al., 2009) induced by lipopolysaccharide administration also 
can be significantly decreased by HBO pretreatment. Further, 
HBO decreases the release of IL-1β and TNF-a in monocytes 
and macrophages derived from human blood (Benson et al., 
2003). HBO exposure is also indicated to lessen cytokine in-
duction (Yamashita and Yamashita, 2000; Kang et al., 2014). 
Additionally, HBO pretreatment inhibits activated inflamma-
tion and gliosis, and stimulates angiogenesis, neurogenesis, and 
production of IL-10. This consequently improves outcomes 
of traumatic brain injury (Lin et al., 2012). Pretreatment with 
HBO is beneficial for recovery after brain surgery, and can en-
hance expression of osteopontin, which reduces the expression 
of IL-1β/nuclear factor-κ-gene binding and expansive protein 
kinase B (Akt) (Hu et al., 2015). 

Discussion
As presented here, there is substantial evidence for a central 
involvement of oxidant stress and inflammatory response in 
POCD. In addition, numerous basic and clinical studies have 
demonstrated that HBOPC has a protective effect on POCD by 
reducing the detrimental inflammation and balancing the oxy-
gen free radicals. The mechanism underlying preconditioning 
is not yet fully understood. Many researchers have suggested 
that HBOPC can alleviate cognitive impairment after surgery 
(Sun et al., 2014) and subsequently decrease the density of 
apoptotic cells and further recovery of nerve function (Wang 
et al., 2009; Lu et al., 2013). The mechanism underlying the 
protection might involve the reduction of systemic and hippo-
campal pro-inflammatory cytokines (Cheng et al., 2011) and 
upregulation of heat-shock protein 32 (Nie et al., 2006). Based 
on the experimental evidence, the prospect for using HBOPC 
to reduce cognitive impairment after surgery is bright. Howev-
er, the number of relevant clinical studies remains low at pres-
ent. Therefore, further studies are critical for understanding the 
fundamental mechanisms of this phenomenon and to explore 
the optimal parameters for pretreatment. 
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